https://youtu.be/WhP6zJbSxec
https://youtu.be/TqLIfHBFY08
https://youtu.be/kOp-3CMb6nY

Remind ourselves that Ideal Gas Law is PV=nRT. If you're not given moles or mass, or not asked to calculate Moles or Mass, do not use the Ideal Gas Law. If you are given Moles or Mass, or asked to calculate Moles or Mass, the only thing you can use is Ideal Gas Law. Make sure you're aware of that.

n first container we have P.V
In second container we have $2 P . V / 2=P . V$
In third container we have $4 \mathrm{P} . \mathrm{V} / 4=\mathrm{P} . \mathrm{V}$
As you can see; as we decrease the volume of container, pressure of gas increases with same amount and multiplication of P and V is always constant.

Example: Gas having $150 \mathrm{~cm}^{3}$ volume has pressure 120 cmHg . If we increase volume of container to $300 \mathrm{~cm}^{3}$, find final pressure of the gas.

Since $P_{1} \cdot V_{1}$ is constant from boyle's law;
$P_{1} \cdot V_{1}=P_{2} \cdot V_{2}$
$120.150=\mathrm{P}_{2} .300$
$P_{2}=60 \mathrm{~cm} \mathrm{Hg}$
As you can see from the example, as we increase volume of gas, pressure decreases with same amount.

Here are all laws dealing with gases.

| Gas Law Formula | | |
| :--- | :--- | :--- | :--- |
| Gas Law | Formula | Description |
| Boyle's Law | $P_{1} V_{1}=P_{2} V_{2}$ | At constant T, as pressure increases, volume decreases. |
| Charles' Law | $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$ | At constant P, as volume increases, temperature increases. |
| Gay-Lussac's Law | $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$ | At constant V , as pressure increases, temperature increases. |
| Combined Law | $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$ | Obtained by combining Boyle's Law, Charles' Law and Gay-
 Lussac's Law. |
| Ideal Gas Law | $P V=n R T$ | |
| $V=$ volume in dm
 $\mathrm{T}=$ temperature in K | $\mathrm{P}=$ pressure in kPa
 $\mathrm{n}=$ number of moles | $\mathrm{R}=$ ideal gas constant |

