20.1 Measure & Convert Dimensional Analysis Lab

What you'll learn ...

Length, time, volume, and mass can be written in scientific notation. Also, the SI system is useful when converting units of measure.

What you'll do ...

Make basic measurements using standards units of measure: meter, second, liter, and gram. Rewrite measured values in scientific notation. Then convert the rewritten values into other units of measure.

Things you'll need ...

Meter stick, stop watch (or, timer), graduated cylinder, scale, and a calculator for computing averages. (Also, blocks, water, and pencil).

Other considerations ...

When using the graduated cylinder, pay attention to the meniscus. A meniscus occurs because of surface tension in the liquid and must be read at eye level. For a concave meniscus, the correct volume will be read at the bottom of the curve.

SI system prefix table			
kilo	k	1000	10 ³
hecto	h	100	10 ²
deca	da	10	10 ¹
(none)	(none)	1	10 ⁰
deci	d	0.1	10^{-1}
centi	С	0.01	10^{-2}
milli	m	0.001	10^{-3}

Examples of scientific notation

Decimal notation	Scientific notation	
2	2 × 10 ⁰	
300	3 × 10 ²	
4,321.768	4.321 768 × 10 ³	
-53,000	−5.3 × 10 ⁴	
6,720,000,000	6.72 × 10 ⁹	
0.2	2 × 10 ⁻¹	
0.000 000 007 51	7.51 × 10 ⁻⁹	

https://en.wikipedia.org/wiki/Scientific notation

Science Concepts

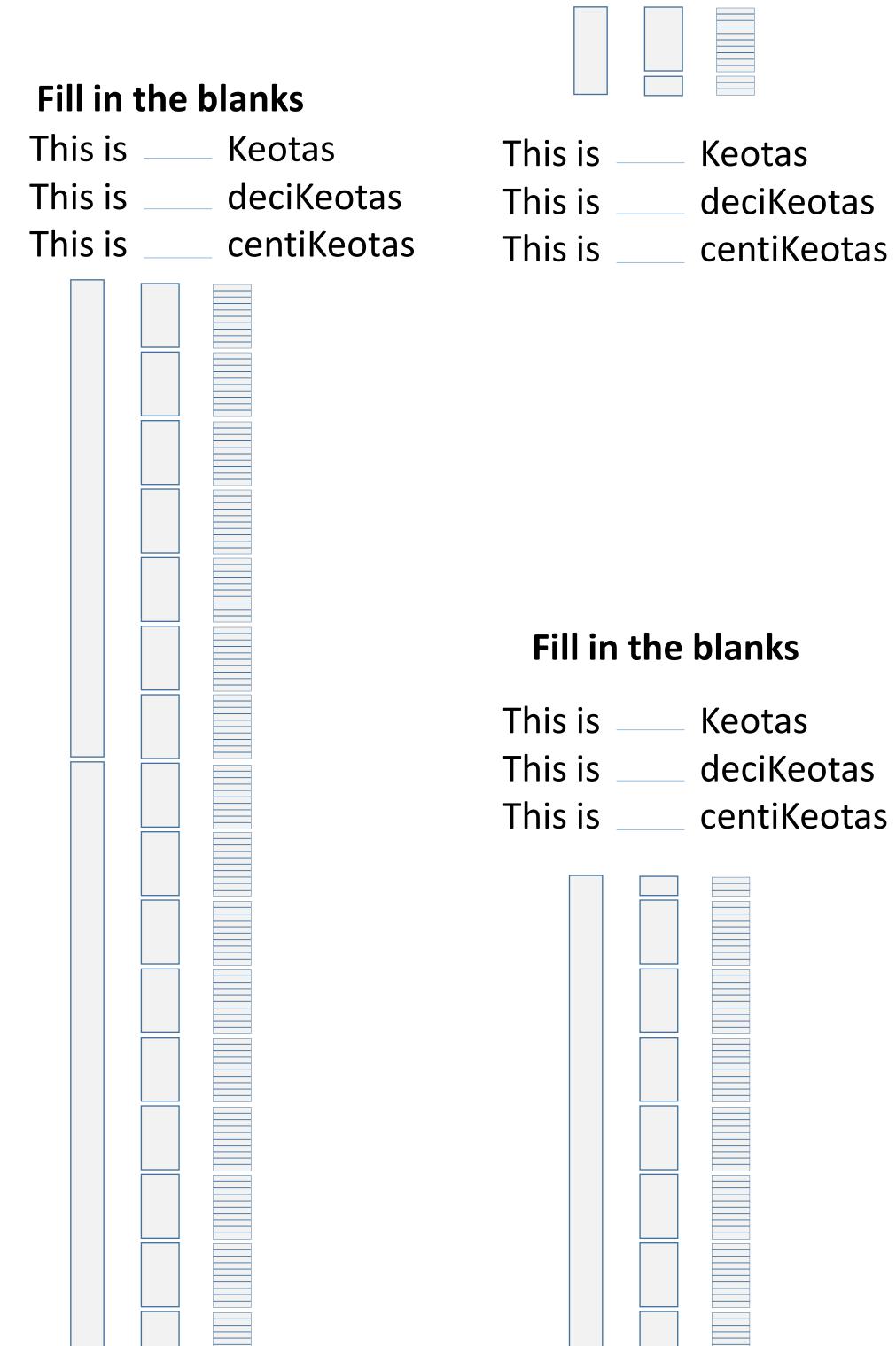
Before starting, read and summarize each paragraph below.

The length of things in science is usually written in meters (m). Often, the numbers are written in scientific notation. The reason lengths are stated in meters is to make comparisons easy. Scientific notation can also make comparisons easier.
The measurement of <u>meters</u> is one of the important standardized measurements in the SI system. Using a prefix in front of the word "meter" is a convenient way to talk about really long things, or reall short things. For example, centimeters are 1/100 th of a meter.
Review the "SI system prefix table" on the previous page. The prefix "centi" can be placed in front of any of the four measurement types in this activity: meter, second, liter, and gram. A centimeter is $1/100^{th}$ of a meter. A centiliter is $1/100^{th}$ of a liter. (And so on)
 The prefixes "deci" and "deca" are very easy to confuse. The prefix "deci" means 1/10th whereas "deca" means 10 times. If something is 5 meters long, then it is 50 decimeters long. That same object would be measured as 0.5 decameters.

Step-by-Step Practice

It is "1 Keota" long.

The illustration above is a *pretend* unit of measure.


If something were twice as long as this it v	would be 2 Keotas.		
Using prefixes from the first page	This is 1 Keota This is 10 deciKeotas This is 100 centiKeotas		
Example	This is 0.6 Keotas This is 6 deciKeotas This is 60 centiKeotas		
Example	This is 1.2 Keotas This is 12 deciKeotas This is 120 centiKeotas		
Fill in the blanks			
This is Keotas This is deciKeotas This is centiKeotas	Keotas deciKeotas centiKeotas		

Step-by-Step Practice

Example

This is 2 KeotasThis is 20 deciKeotas

This is 200 centiKeotas

Fill in the blanks

More Practice

On this page, practice using the prefixes "deci" and "centi" with the SI units of meters, seconds, liters, and grams.

If something is 1 meter long, how many decimeters is that object?
decimeters. Remember there are 10 decimeters in each meter
If something is 2 meters long, how many decimeters is that object?
decimeters.
If a liquid is 1 liter, how many deciliters is that fluid?
deciliters.
If a liquid is 5 liters, how many deciliters is that fluid?
deciliters.
If you take 1 second to sneeze, how many deciseconds is the sneeze?
deciseconds.
If you take 1 second to sneeze, how many <u>centi</u> seconds is the sneeze?
<u>centi</u> seconds.
If the mass is 80 grams, how many centigrams is it?
centigrams.

Using Scientific Notation

If the figure above is 1 Keota long, measured in centiKeotas,

it would be 1×10^2 centiKeotas (using scientific notation).

Remember that 10 ² is 10 multiplied by itself twice ((10 x 10).	
Compare this to the "step-by-step" practice	page This is 1 Keot	a
	This is 1 x 10 ¹	deciKeotas
	This is 1 x 10 ²	² centiKeotas
Compare this to the "step-by-step" practice	page This is 6 x 10	¹ Keotas
	This is 6	deciKeotas
	This is 6 x 10 ¹	- centiKeotas
Compare this to the "step-by-step" practice	page This is 1.2 Kee	otac
		.0 ¹ deciKeotas
	This is 1.2 x 1	0 ² centiKeotas
Fill in the blanks using scientific notation		
This is	Keotas	
This is	deciKeotas	
This is	centiKeotas	

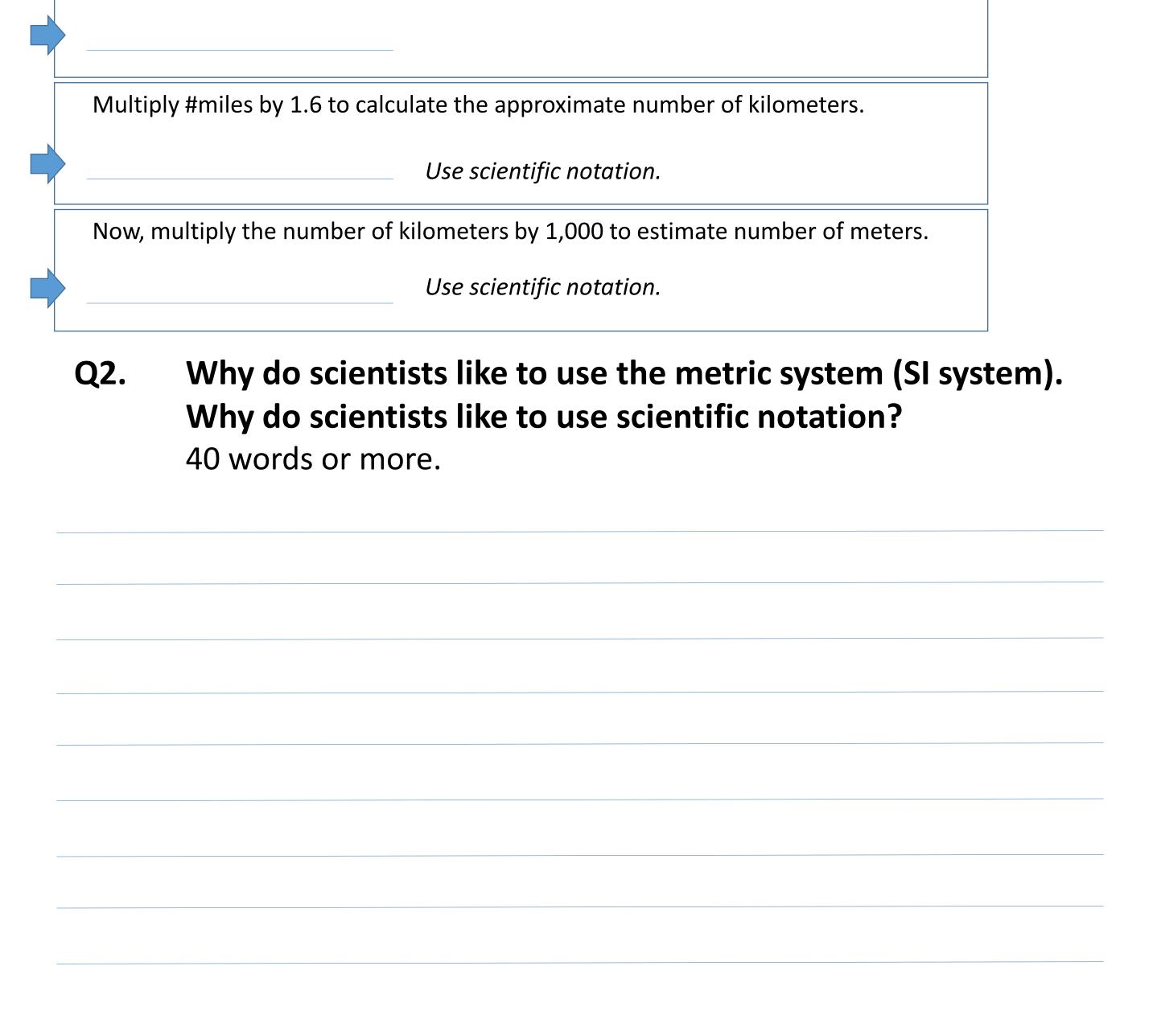
Now Do This!

Write all answers in scientific notation.

Use no more than three decimal places in the final answer.

Measure the len	ngth of the whiteboard
	centimeters (cm)
	hectometers (hm)
	kilometers (km)
Average Height	of Group Members
	centimeters (cm)
	millimeters (mm)
	dekameters (dam)
Time to say the	alphabet backwards
	seconds (s)
	hectoseconds (hs)
	milliseconds (ms)
Height of tower	(Build for 30 seconds, then measure the height)
	meters (m)
	hectometers (hm)
	decimeters (dm)
Volume of water	r in Graduated Cylinder
	milliliters (mL)
	dekaliters (daL)
	kiloliters (kL)
Mass of a pencil	or pen on Scale
	grams (g)
	kilograms (kg)
	milligrams (mg)

Show-Off Your Smarts!



Instructions

Complete as an individual or small group.

About how far is it from school to your house (in miles)?

- Discuss your ideas/answers/responses in a small group.
- Select one person to present your responses to the class.
- Q1. Estimate the distance from school to your home in miles. Then convert the distance to kilometers and meters using scientific notation.

