20.1 Measure \& Convert Dimensional Analysis Lab

What you'll learn ...

Length, time, volume, and mass can be written in scientific notation. Also, the SI system is useful when converting units of measure.

What you'll do ...

Make basic measurements using standards units of measure: meter, second, liter, and gram. Rewrite measured values in scientific notation. Then convert the rewritten values into other units of measure.

Things you'll need ...

Meter stick, stop watch (or, timer), graduated cylinder, scale, and a calculator for computing averages. (Also, blocks, water, and pencil). Other considerations ...

When using the graduated cylinder, pay attention to the meniscus. A meniscus occurs because of surface tension in the liquid and must be read at eye level. For a concave meniscus, the correct volume will be read ta the bottom of the curve.

SI system prefix table			
kilo	k	1000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}
(none)	(none)	1	10^{0}
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}

Examples of scientific notation

Decimal notation	Scientific notation
2	2×10^{0}
300	3×10^{2}
$4,321.768$	4.321768×10^{3}
$-53,000$	-5.3×10^{4}
$6,720,000,000$	6.72×10^{9}
0.2	2×10^{-1}
0.00000000751	7.51×10^{-9}

https://en.wikipedia.org/wiki/Scientific notation

Science Concepts

Before starting, read and summarize each paragraph below.

The length of things in science is usually written in meters (m). Often, the numbers are written in scientific notation. The reason lengths are stated in meters is to make comparisons easy.
Scientific notation can also make comparisons easier.

The measurement of meters is one of the important standardized measurements in the SI system. Using a prefix in front of the word "meter" is a convenient way to talk about really long things, or really short things. For example, centimeters are $1 / 100^{\text {th }}$ of a meter.

Review the "SI system prefix table" on the previous page. The prefix "centi" can be placed in front of any of the four measurement types in this activity: meter, second, liter, and gram. A centimeter is $1 / 100^{\text {th }}$ of a meter. A centiliter is $1 / 100^{\text {th }}$ of a liter. (And so on ...)

The prefixes "deci" and "deca" are very easy to confuse. The prefix "deci" means $1 / 10^{\text {th }} \ldots$ whereas "deca" means 10 times.

- If something is 5 meters long, then it is 50 decimeters long.
- That same object would be measured as 0.5 decameters.

Step-by-Step Practice

\qquad
The illustration above is a pretend unit of measure. It is " 1 Keota" long. If something were twice as long as this it would be 2 Keotas.

Using prefixes from the first page
\square

Example

\square

Example

\qquad
\square
\square 4.

Fill in the blanks
\square This is
This is
This is

Keotas
deciKeotas
centiKeotas

Fill in the blanks

\square Keotas
\square deciKeotas centiKeotas

Step-by-Step Practice

Example

This is 2 Keotas
This is 20 deciKeotas
This is 200 centiKeotas

Fill in the blanks

This is	Keotas
This is_l	deciKeotas
This is	centiKeotas

Fill in the blanks

This is Keotas
This is deciKeotas
This is centiKeotas

Fill in the blanks
This is Keotas
This is deciKeotas
This is centiKeotas

More Practice

On this page, practice using the prefixes "deci" and "centi" with the SI units of meters, seconds, liters, and grams.

If something is 1 meter long, how many decimeters is that object?
\qquad decimeters. Remember there are 10 decimeters in each meter.

If something is 2 meters long, how many decimeters is that object?
\qquad decimeters.

If a liquid is 1 liter, how many deciliters is that fluid?
\qquad deciliters.

If a liquid is 5 liters, how many deciliters is that fluid?
\qquad deciliters.

If you take 1 second to sneeze, how many deciseconds is the sneeze?
\qquad deciseconds.

If you take 1 second to sneeze, how many centiseconds is the sneeze?
\qquad centiseconds.

If the mass is 80 grams, how many centigrams is it?
\qquad centigrams.

Using Scientific Notation

If the figure above is 1 Keota long, measured in centiKeotas, it would be 1×10^{2} centiKeotas (using scientific notation). Remember that 10^{2} is 10 multiplied by itself twice (10×10).

Compare this to the "step-by-step" practice page
\square

Compare this to the "step-by-step" practice page
\square
||

Compare this to the "step-by-step" practice page
\square This is 1.2 Keotas
This is 1.2×10^{1} deciKeotas
This is 1.2×10^{2} centiKeotas

Fill in the blanks using scientific notation

\square This is
$\square \square \square \square \square$ This is \square
$\\|$ This is
\square

Keotas
deciKeotas
centiKeotas

Now Do This!

Write all answers in scientific notation.

Use no more than three decimal places in the final answer.

Measure the length of the whiteboard
centimeters (cm)
hectometers (hm)
kilometers (km)
Average Height of Group Members
centimeters (cm)
millimeters (mm)
dekameters (dam)

Time to say the alphabet backwards
seconds (s)
hectoseconds (hs)
milliseconds (ms)
Height of tower (Build for 30 seconds, then measure the height)
meters (m)
_ hectometers (hm)
decimeters (dm)
Volume of water in Graduated Cylinder
milliliters (mL)
dekaliters (daL)
kiloliters (kL)

Mass of a pencil or pen on Scale
grams (g)
kilograms (kg)
milligrams (mg)

Show-Off Your Smarts!

Instructions

- Complete as an individual or small group.
- Discuss your ideas/answers/responses in a small group.
- Select one person to present your responses to the class.

Q1. Estimate the distance from school to your home in miles. Then convert the distance to kilometers and meters using scientific notation.

About how far is it from school to your house (in miles)?

Multiply \#miles by 1.6 to calculate the approximate number of kilometers.

Use scientific notation.
Now, multiply the number of kilometers by 1,000 to estimate number of meters.
Use scientific notation.

Q2. Why do scientists like to use the metric system (SI system).
Why do scientists like to use scientific notation?
40 words or more.

