064 Math Practice Proportions Using Cross Products

Suppose you are trying to find the missing number in a proportion. You can use the cross product method. When you use this method, you multiply the top of one ratio times the bottom of the other ratio. Then you multiply the bottom half of the first ratio times the top half of the second ratio.

Example:

$$
\begin{aligned}
& \frac{\frac{10}{10}=\frac{15}{10}}{15 \times N} \\
& 15 \times 10 \times 30
\end{aligned}
$$

$$
15 \times N=300
$$

$\frac{15 \times \mathrm{N}}{15}=\frac{300}{15}$
$\frac{{ }^{1} 15 \times N}{15}=\frac{300}{15}$
$\mathrm{N}^{1}=\frac{300}{15}=20$
$\frac{10}{20}=\frac{15}{30}$

Step 1: Multiply on the diagonals.

Step 2: Simplify. In this case, you want to isolate the N from all other numbers. Since the problems call for you to multiply something times N , use the opposite operation-that is, division.

Step 3: Complete with a final division.

$$
\begin{aligned}
& \frac{N}{12}=\frac{20}{24} \\
& 12 \times 20=N \times 24
\end{aligned}
$$

$$
240=N \times 24
$$

Use the cross product method to solve for the missing number.

1. $\frac{3}{4}=\frac{N}{8}$
$N=$ \qquad
2. $\frac{5}{12}=\frac{4}{N}$
$N=$ \qquad
3. $\frac{5}{8}=\frac{6}{N}$
$N=$ \qquad
4. $\frac{4}{N}=\frac{12}{15}$
$N=$ \qquad
5. $\frac{4}{N}=\frac{1}{30}$
$N=$ \qquad
6. $\frac{5}{N}=\frac{6}{15}$
$N=$ \qquad

It is 230 miles from Rochester to Duluth. If Barbara drives an average of 50 miles per hour, how long will it take her to make the trip?

065 Math Practice
 Using the Cross Product

Use the cross product method to solve for the missing number.

1. $\frac{N}{6}=\frac{6}{9}$
$\mathrm{N}=$ \qquad
2. $\frac{4}{N}=\frac{6}{15}$
$\mathrm{N}=$ \qquad
3. $\frac{4}{12}=\frac{15}{N}$
$\mathrm{N}=$ \qquad
4. $\frac{6}{10}=\frac{N}{8}$
$\mathrm{N}=$ \qquad
5. $\frac{4}{5}=\frac{N}{60}$
$N=$ \qquad
6. $\frac{13}{15}=\frac{\mathrm{N}}{45}$
$\mathrm{N}=$ \qquad
7. $\frac{5}{N}=\frac{6}{15}$
$N=$ \qquad
8. $\frac{8}{12}=\frac{6}{N}$
$\mathrm{N}=$ \qquad
9. $\frac{1}{3}=\frac{N}{6}$
$\mathrm{N}=$ \qquad
10. $\frac{12}{N}=\frac{4}{9}$
$N=$ \qquad
11. $\frac{12}{8}=\frac{N}{5}$
$\mathrm{N}=$ \qquad
12. $\frac{10}{13}=\frac{150}{N}$
$\mathrm{N}=$ \qquad
13. $\frac{10}{24}=\frac{50}{N}$
$\mathrm{N}=$ \qquad
14. $\frac{6}{15}=\frac{10}{N}$
$\mathrm{N}=$ \qquad
15. $\frac{3}{8}=\frac{\mathrm{N}}{32}$
$\mathrm{N}=$ \qquad
16. $\frac{8}{25}=\frac{\mathrm{N}}{10}$
$\mathrm{N}=$ \qquad
17. $\frac{8}{3}=\frac{12}{N}$
$\mathrm{N}=$ \qquad
18. $\frac{5}{8}=\frac{N}{12}$
$\mathrm{N}=$ \qquad
19. $\frac{13}{\mathrm{~N}}=\frac{52}{20}$
$N=$ \qquad
20. $\frac{23}{N}=\frac{92}{28}$
$N=$ \qquad
21. $\frac{3}{5}=\frac{N}{15}$
$\mathrm{N}=$ \qquad

There are 20 cars in the parking lot. If 2 out of 5 cars are two-door models, how many two-door cars are in the lot?

